

We Design and Supply *RoadCem* in-situ soil bunds/bases for Wetlands and Reservoir Projects

Proposal Overview

- PowerCem UK are happy to talk to Water Utility companies and contractors planning and constructing Wetland projects and Reservoirs. We offer a low carbon totally sustainable alternative to plastic membrane usage, allowing existing site soils of any type to be treated to form durable impermeable basins. Avoiding the need to truck clays and stone to site.
- RoadCem soil stabilisation is not sensitive to mixed soils, high organics, raised sulphates or over-wet fills being encountered. This allows a generic set of design proposals to be developed which will meet the wide range of ground conditions and loadings across the proposed projects.
- PowerCem in the UK work closely with consulting engineers Rodgers Leask of Derby who can supply fully engineered options with indemnity and design warrantees.

RoadCem in use for Suez Canal widening.

The Benefits of RoadCem Stabilisation

Reservoir and Wetland project benefits gained from the use of RoadCem

- Reduced earthworks and necessity to remove top soils from site for replacement with clays and stone.
- RoadCem offers rapid production of the impermeable stabilised bearing/bund layers from in-situ soils...
- Non-leaching stabilisation means no environmental contamination concerns from saturation of the RoadCem stabilised layer once the water is introduced. Also avoiding the environmentally sensitive need to use plastic membranes.
- RoadCem is not a 'soft stabilisation' technique it forms robust, crack free layers that will not soften over time when exposed to standing and/or running water.
- Programme and cost benefits achieved by all the above.

RoadCem Soil Stabilisation: Technical Information

RoadCem is a patented additive used to enhance cement based soil stabilisation. It is an inert blend of synthetic zeolites, and alkaline earth metals formed into a powdered product.

RoadCem enhances the behaviour of the cementitious reaction acting as a catalyst to produce a unique form of Nano-scale crystal growths within the cement bound material – promoting the formation of needle like crystals which create a binding lattice between and around the soil particles.

This crystalline structure differs from that within normal cement bonding where the contact point is gluing between adjacent soil particles typically occurs to develop strength-causing its inherently brittle nature and prone to cracking.

This binding lattice matrix produces much higher strengths and flexural stiffness of the end product, making it more robust and resistant to cracking able to withstanding high stresses without cracking, and repeated soaking and saturated conditions.

RoadCem Soil Stabilisation Details

RoadCem facilitates an extended, more efficient chemical reaction between the water and cement within any cementitious bound materials leading to:-

- A reduction of un-hydrated 'free' cement powder within the mix
- Can be used with soils having high sulphate levels and organics
- Greater cement hydration means strength with lower residual pH levels
- Increased strength characteristics without brittle or shrinkage behaviour
- Higher flexural stiffness (increased Young's Modulus) enhanced durability
- Highly waterproof product no secondary sulphate reaction or leaching
- cement compounds into surrounding ecosystems during periods of saturation.

Mixed stabilised soils soaked for 28 days

RoadCem in-situ soil bases.

NUEVO CANAL DE PANAMÁ

2012-2013

NUEVO CANAL DE PANAMÁ

TING & INSPECT ANAMA, S. de R.						Third Se Compressive / Ten	t of Locks Proj sile Strength Cylin	ect ders (LAB)					
	Project Name		ATLANTIC		Project Number	F100013	Date Sampled	7-Jun-12	т	ime Sampled**	02:30 p.m.	Time Batched**	N/A
Sample No. 5003			5003		Mix Design ID**	N/A	Design Strength	N/A	Technician		AS-RS	Mixing Time**, s	N/A
Ticket #**		N/A			Truck #**:	70	Batching Plant I.D.**	N/A	Checked By		ER]	
5	Sample Location:	Field	🗹 Lab 🛛	Plant P	lacement Location**	POWER CEMENT F30) LAB TEST (35 CILI	NDROS 3 VIGAS)		w/cm**	N/A]	
	Slump (mm)	90] .	Air Temp. (°C)	28	Concrete Temp.* (°C)	32.8		Air (%)	1.2		Wet Sieve?	
Mtl. &	Pot Weight (kg)	21.37	Р	ot Weight (kg)	3.85	Pot Volume (m ³)	0.0071	Unit V	Veight (kg/m ³)	2468	Yes		✓ No
Scale ID	3375	Scale (Check		Air Meter ID	5000	Thermometer ID	3371]	Slump Cone ID	3050]	
							Slump	Air	Concre	te Temp	Air Temp		
			7			SPECIFICUTIONS						1	
Mix Type	MARI	NO				SPECIFICATIONS	N/A	N/A	N	I/A	N/A		
Mix Type Age (day)	MARI Date	NO Cyl No.	Height (mm)	Dia (mm)	Area (mm ²)	Fracture Type	N/A Weight (kg)	N/A Unit Weight (kg/m ³)	N Test Method	Initials	N/A Total Load (kN)	Strength (MPa)	Checked By
Mix Type Age (day)	Date 10-Jun-12	NO Cyl No. 1	Height (mm) 304.8	Dia (mm) 152.4	Area (mm ²) 18241.47	Fracture Type	N/A Weight (kg) 14.047	N/A Unit Weight (kg/m ³) 2526	Test Method C	//A Initials M.A	N/A Total Load (kN) 414.7	Strength (MPa) 22.7	Checked By SB
Mix Type Age (day) 3 7	MARI Date 10-Jun-12 14-Jun-12	NO Cyl No. 1 2	Height (mm) 304.8 304.8	Dia (mm) 152.4 152.4	Area (mm ²) 18241.47 18241.47	Fracture Type 3 4	N/A Weight (kg) 14.047 14.09	N/A Unit Weight (kg/m ³) 2526 2534	Test Method C C	//A Initials M.A M.A	N/A Total Load (kN) 414.7 484.8	Strength (MPa) 22.7 26.6	Checked By SB SB
Mix Type Age (day) 3 7 7	MARI Date 10-Jun-12 14-Jun-12 14-Jun-12	NO Cyl No. 1 2 3	Height (mm) 304.8 304.8 304.8	Dia (mm) 152.4 152.4 152.4	Area (mm ²) 18241.47 18241.47 18241.47	Fracture Type 3 4 3	N/A Weight (kg) 14.047 14.09 14.03	N/A Unit Weight (kg/m ³) 2526 2534 2523	Test Method C C C	/A Initials M.A M.A M.A	N/A Total Load (kN) 414.7 484.8 502.7	Strength (MPa) 22.7 26.6 27.6	Checked By SB SB SB
Mix Type Age (day) 3 7 7 28	MARI Date 10-Jun-12 14-Jun-12 14-Jun-12 5-Jul-12	NO Cyl No. 1 2 3 4	Height (mm) 304.8 304.8 304.8 304.8	Dia (mm) 152.4 152.4 152.4 152.4	Area (mm ²) 18241.47 18241.47 18241.47 18241.47	Fracture Type 3 4 3 5	N/A Weight (kg) 14.047 14.09 14.03 14.05	N/A Unit Weight (kg/m ³) 2526 2534 2523 2527	Test Method C C C C	Initials M.A M.A M.A M.A M.A	N/A Total Load (kN) 414.7 484.8 502.7 634.8	Strength (MPa) 22.7 26.6 27.6 34.8	Checked By SB SB SB JH
Mix Type Age (day) 3 7 7 28 28 28	MARI Date 10-Jun-12 14-Jun-12 14-Jun-12 5-Jul-12 5-Jul-12	NO Cyl No. 1 2 3 4 5	Height (mm) 304.8 304.8 304.8 304.8 304.8 304.8	Dia (mm) 152.4 152.4 152.4 152.4 152.4 152.4	Area (mm ²) 18241.47 18241.47 18241.47 18241.47 18241.47	Fracture Type 3 4 3 5 4	N/A Weight (kg) 14.047 14.09 14.03 14.05 14.06	N/A Unit Weight (kg/m ³) 2526 2534 2523 2527 2529	Test Method C C C C C C C C	Initials M.A M.A M.A M.A M.A M.A	N/A Total Load (kN) 414.7 484.8 502.7 634.8 662.5	Strength (MPa) 22.7 26.6 27.6 34.8 36.3	Checked By SB SB SB JH JH
Mix Type Age (day) 3 7 7 28 28 90	MARI Date 10-Jun-12 14-Jun-12 14-Jun-12 5-Jul-12 5-Jul-12 5-Sep-12	NO Cyl No. 1 2 3 4 5 6	Height (mm) 304.8 304.8 304.8 304.8 304.8 304.8 304.8	Dia (mm) 152.4 152.4 152.4 152.4 152.4 152.4 152.4	Area (mm ²) 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47	Fracture Type 3 4 3 5 4 4 4 4	N/A Weight (kg) 14.047 14.09 14.03 14.05 14.06 14.06	N/A Unit Weight (kg/m ³) 2526 2534 2523 2527 2529 2529	Test Method C C C C C C C C C	Initials M.A M.A M.A M.A M.A DG	N/A Total Load (kN) 414.7 484.8 502.7 634.8 662.5 878	Strength (MPa) 22.7 26.6 27.6 34.8 36.3 48.1	Checked By SB SB JH JH MM
Mix Type Age (day) 3 7 7 28 28 90 90 90	MARI Date 10-Jun-12 14-Jun-12 14-Jun-12 5-Jul-12 5-Sep-12 5-Sep-12	NO Cyl No. 1 2 3 4 5 6 7	Height (mm) 304.8 304.8 304.8 304.8 304.8 304.8 304.8 304.8	Dia (mm) 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4	Area (mm ²) 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47	Fracture Type 3 4 3 5 4 4 4 4 4 4	N/A Weight (kg) 14.047 14.09 14.03 14.03 14.05 14.06 14.06 14.05	N/A Unit Weight (kg/m ³) 2526 2534 2523 2527 2529 2529 2529 2527	Test Method C C C C C C C C C C C	Initials M.A M.A M.A M.A M.A DG DG DG	N/A Total Load (kN) 414.7 484.8 502.7 634.8 662.5 878 857.8	Strength (MPa) 22.7 26.6 27.6 34.8 36.3 48.1 47.0	Checked By SB SB JH JH MM MM
Mix Type Age (day) 3 7 7 28 28 90 90 120	MARI Date 10-Jun-12 14-Jun-12 14-Jun-12 5-Jul-12 5-Sep-12 5-Sep-12 5-Oct-12	Cyl No. 1 2 3 4 5 6 7 8	Height (mm) 304.8 304.8 304.8 304.8 304.8 304.8 304.8 304.8 304.8	Dia (mm) 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4	Area (mm ²) 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47	Fracture Type 3 4 3 5 4 4 4 4 4 4 4 4 4	N/A Weight (kg) 14.047 14.09 14.03 14.03 14.05 14.06 14.06 14.05 14.03	N/A Unit Weight (kg/m ³) 2526 2534 2523 2527 2529 2529 2529 2527 2523	Test Method C C C C C C C C C C C C C C C C C C C	Initials M.A M.A M.A M.A M.A DG DG HM	N/A Total Load (kN) 414.7 484.8 502.7 634.8 662.5 878 857.8 1025.2	Strength (MPa) 22.7 26.6 27.6 34.8 36.3 48.1 47.0 56.2	Checked By SB SB JH JH MM MM MM
Mix Type Age (day) 3 7 7 28 28 90 90 120 120 120	MARI Date 10-Jun-12 14-Jun-12 14-Jun-12 5-Jul-12 5-Sep-12 5-Sep-12 5-Oct-12 5-Oct-12	NO Cyl No. 1 2 3 4 5 6 7 8 9	Height (mm) 304.8 304.8 304.8 304.8 304.8 304.8 304.8 304.8 304.8 304.8 304.8	Dia (mm) 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4	Area (mm ²) 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47	Fracture Type 3 4 3 5 4 4 4 4 4 4 4 4 4 4	N/A Weight (kg) 14.047 14.09 14.03 14.05 14.06 14.06 14.05 14.05 14.03 14.03	N/A Unit Weight (kg/m ³) 2526 2534 2523 2527 2529 2529 2529 2527 2523 2522	Test Method C C C C C C C C C C C C C C	Initials M.A M.A M.A M.A M.A DG DG HM HM	N/A Total Load (kN) 414.7 484.8 502.7 634.8 662.5 878 857.8 1025.2 1059.8	Strength (MPa) 22.7 26.6 27.6 34.8 36.3 48.1 47.0 56.2 58.1	Checked By SB SB JH JH MM MM MM MM
Mix Type Age (day) 3 7 7 28 28 90 90 120 120 120	MARI Date 10-Jun-12 14-Jun-12 14-Jun-12 5-Jul-12 5-Jul-12 5-Sep-12 5-Sep-12 5-Oct-12 5-Oct-12	NO Cyl No. 1 2 3 4 5 6 7 8 9 10	Height (mm) 304.8 304.8 304.8 304.8 304.8 304.8 304.8 304.8 304.8 304.8	Dia (mm) 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4	Area (mm ²) 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47	Fracture Type 3 4 3 5 4 4 4 4 4 4 4 4 4	N/A Weight (kg) 14.047 14.09 14.03 14.05 14.06 14.06 14.05 14.05 14.03 14.02	N/A Unit Weight (kg/m ³) 2526 2534 2523 2527 2529 2529 2529 2529 2527 2523 2522	Test Method C C C C C C C C C C C C C C	Initials M.A M.A M.A M.A M.A DG DG HM HM HM	N/A Total Load (kN) 414.7 484.8 502.7 634.8 662.5 878 857.8 1025.2 1059.8	Strength (MPa) 22.7 26.6 27.6 34.8 36.3 48.1 47.0 56.2 58.1	Checked By SB SB JH JH MM MM MM MM MM
Mix Type Age (day) 3 7 7 28 28 90 90 120 120	MARI Date 10-Jun-12 14-Jun-12 14-Jun-12 5-Jul-12 5-Jul-12 5-Sep-12 5-Sep-12 5-Oct-12 5-Oct-12	NO Cyl No. 1 2 3 4 5 6 7 8 9 10 11	Height (mm) 304.8 304	Dia (mm) 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4 152.4	Area (mm ²) 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47 18241.47	Fracture Type 3 4 3 5 4 4 4 4 4 4 4 4 4 4	N/A Weight (kg) 14.047 14.09 14.03 14.05 14.06 14.06 14.05 14.03 14.03 14.02	N/A Unit Weight (kg/m ³) 2526 2534 2523 2527 2529 2529 2527 2523 2522	Test Method C C C C C C C C C C C C C C C C C C C	Initials M.A M.A M.A M.A M.A DG DG HM HM HM	N/A Total Load (kN) 414.7 484.8 502.7 634.8 662.5 878 857.8 1025.2 1059.8	Strength (MPa) 22.7 26.6 27.6 34.8 36.3 48.1 47.0 56.2 58.1	Checked By SB SB JH JH MM MM MM MM MM

Referenced ASTM Standards: C172, C143, C138, C231, C173, C31, C617, C1231, C39, C496, C1064

Nombre de reconocimiento (DN): cn=Erick Reveles, o=Fall Line Testing and Inspeciton Panama, ou, email=Erick.Reveles@falllinetsting.c om, c=<n

Fecha: 2012.10.05 16:50:18 -05'00'

G00/FALTWS0017 Rev. 031212 Fall Line Testing Inspection Panama, S. de R.L. Piso 6 - Oficina 608 Panama, Panama PCC A

1/1

PERMEABILITY

LIENT	c	DOWEDCENINE	100						IICION		14 DE AC	OPTO DE 20	142		
OCALI	ZACION	CANAL PANAMA	NCO .				_	No. REPO	RTE		14 DE AG	0510 DE 20	/12		
TENC	ION	ING. OROZCO No. CONT								TROL 1					
		CONCRETO	ENDUR	ECIDO, M	ASA ES	PECIFIC	A. ABSO	RCION Y	VACIO	S NMX (263 / A	STM C 64	2		
MTRA	FECHA	MUESTRA	CLASIF	ALTURA	DIAM	(PESOS	G (grs)	. S	ABS-I	ABS-E	g1	g2	VACIOS	
No.	ELAB	UBICACIÓN	TIPO	(cm)	(cm)	A	В	С	D	(%)	(%)	Mg/m ³	Mg/m ³	(%)	
E24	11-07-12	ConcreCem	CIL	29.8	15.0	12,125	12,550.0	12,360.0	7,120.0	3.51	1.94	2.31	2.42	4.48	
E25	11-07-12	ConcreCem	CIL	25.0	15.0	10,120	10,285.0	10,235.0	5.840.0	1.63	1.95	2.32	2.42	2.62	
E27	11-07-12	ConcreCem	CIL	30.0	15.0	11,875	12,060.0	12,050.0	6,655.0	1.56	1.47	2.20	2.27	3.24	
5	Sector 1.55		1.0000	1000000	2012240	CONSTRUCTION OF	Constant Constant	1	1.3100000	2002003	0.002	20020002	132725	States of the	
6															
7															
8															
10															
11															
12															
13															
14															
16															
17															
18															
19															
20	-				_	-			-	_			-	-	
21															
23															
24															
25															
STAD	STICOS	MEDIA		28.7	15.0	11,581.3	11,880.0	11,771.3	6,696.5	2.53	1.62	2.28	2.37	3.70	
		DESV. EST.		2.4	0.0	1120.7	1221.0	1037.9	616.4	1.1	0.4	0.1	0.1	0.9	
IMBOL	OGIA.						GRAFICO I	DE COMPO	RTAMIEN	TO:					
A	Masa Seca	(grs)	ruporficialm	onto soos (a	(97	4.00			_		_		_		
C	Masa satura	da por inmersión y	superficialm	ente seca (g	rs)	3.50	1								
D	Masa de la j	probeta sumergida	(grs)	(9		2.50	1								
g1	Masa espec	ifica seca (grs)	3			2.00	100								
g2	Masa espec	ífica aparente (grs)				1.00	r		_						
ABS-I	Absorción p	or Inmersión				0.50									
ABS-E	Absorción p	or Ebullición				1	2 3 4	5 6 7 8	9 10 11	12 13 14	15 16 17	18 19 20 2	1 22 23 24	25 26 27	
										No. de M	uestras				
									6		14	H			
BSER	VACIONES:	anuás de la ser la		2.52	0/						N	112200	X		
	Absorción d	después de Inmersió después de la Ebuil	n: lición:	2.53	70						NIX	and the second			
	Masa espec	ifica seca:	nortuli I.	2.28	Mg/m ³					-	ng, Alton	so Rafael	Ayala Pé	rez.	
	Masa apare	nte:		2.37	Mg/m ³					0.0	6	erente Té	cnico		
	% Volúmern	de poros permeble	S:	3.70	%						Ced	Prof. No.	2076742		
	Las muestra	s elaboradas con C	concreCem p	resentan me	enor abso	rción y % de	volumen de	9							
	poros perme	ables.										1			

	INFORME NO.:	235 S.S.	O.T. No.: 32.421	
INTERESADO:	Productora Acua	rio, S.A.		
PROYECTO:	Represa			
ASUNTO:	Ensayo de Perm	eabilidad Cabeza Variable		
NORMA:	ASTM D 5856-00	D		
UBICACIÓN:	Escuintla			
MUESTRA No.:	1	PROFUNDIDAD: X r	netros	
DESCRIPCIÓN D	DEL SUELO:	Limo Arenoso Color Café		
FECHA:	Lunes, 28 de Ab	ril de 2014		
RESULTADO DE	EL ENSAYO:			
	Coeficiente de F	Permeabilidad= 0,00 x 10	° cm/s	
OBSERVACION	ES: Muestra proporcio Mezcla de Suelo, (Previo a ensayar s	nada por el interesado. Cemento (180kg/m³) y POWi se realizó curado de la muest	ERCEM (1,8 kg/m³). Ira.	

FLOOD RESISTANT – IMPERMEABLE UNESCO RECOMMENDED

Macro-economic Effects of Using the PowerCem Technology on Road Infrastructure in flood risk Areas

Ref nr: RC.INT.17.24052012

May 24th, 2012

Conventional deep stone road with concrete surface

Stabilised soil road treated in-situ with RoadCem

SABANA YEGUA DAM

Dam runoff treated and sealed with RoadCem

WATER RESERVOIR ISRAEL

WATER RESERVOIR ISRAEL

This is a very nice project to construct with RoadCem. If you have samples and the soil characterization we can start to prepare three different mix designs. Checking the impermeability / water absorption / shear strength / pressure and displacement.

Clay + Dutch material		E						
stretch vs tension	0,75	mm	400	kPa	7,07	kN	9425	kN/m ²
	0,38	mm	150	kPa	2,65	kN	6976	kN/m ²
	0,22	mm	60	kPa	1,06	kN	4819	kN/m ²
Clay + Dutch material	+ 4% (cement					Е	
stretch vs tension	0,72	mm	400	kPa	7,07	kN	9817	kN/m ²
	0,70	mm	150	kPa	2,65	kN	3787	kN/m ²
	0,21	mm	60	kPa	1,06	kN	5049	kN/m ²
Clay + Dutch material	+ 6%	cement					F	
Clay · Duten material	. 0 /0 .	centent	400				-	2
stretch vs tension	0,63	mm	400	kPa	7,07	kN	11220	kN/m²
	0,48	mm	150	kPa	2,65	kN	5522	kN/m ²
	0,28	mm	60	kPa	1,06	kN	3787	kN/m ²

Design conclusion

The pressure strength of all three mixtures are perfectly acceptable.

Experience says that a critical shear strength of 100 á 150 kPa suffices.

The results would say that the 2% mix would be sufficient, but variations in material factors have to be taken into account.

A normal factor is 1,25, so the 4% mix gets a css of 152 kPa. This is perfect..

Large Reservoir constructed from in-situ soils using RoadCem

CANALISATION CAIRO

Contacts

PowerCem Technologies UK Ltd.

Les Ellaby

les@powercem.co.uk

Mobile No.

07960 969584

Rodgers Leask Consultants

Andy Leask andy.leask@rodgersleask.co.uk

Mobile No.

07540 720721

